株洲网

首页 > 株洲网教育频道 > 考生必查 > 正文

想摆脱数学成绩总上不去的“难怪圈”?只需做到这5点!

数学是理科思维的集大成者,数学题型千变万化。如何学好数学?怎么做才能摆脱提升数学成绩的“难怪圈”?跟着小编一起看看吧!

上课时,认真听课并适当做笔记,不放过任何联想小结的机会是读好书的关键。学生上课听课不仅要获取知识,更重要的是还要学习老师的思维方法,锻炼分析问题与解决问题的能力。

有些学生上课拼命记笔记、抄板书,出发点是好的,但却没有及时理解老师讲的内容,而在课后,需要花更多的时间去理解课堂上的内容,降低了学习质量,得不偿失。

记笔记的" 三原则":

1.宁可笔记记不全,也要先听老师讲课的内容。

2.课本上讲述很详细的内容,不再做详细的笔记。

3.不抄老师的板书,而是重点记老师的分析思路与解题方法。

因此,简单的问题不爱听就必然导致复杂的问题听不懂,一段时间这样就要退步,长期这样就变成了差生。

1.把复习课当“新课”

这么做,是促使你在上复习课的时候也能够像上新课一样积极思考,并且大胆地把想法和思路说出来。尤其是针对自己薄弱的学科,更应如此。说错了不要紧,如果说对了,得到老师的肯定,反而能够增强信心。

2.从“例题”中淘金

准备了一个笔记本,但并不记录知识点、考点,而是记录例题,从例题中着手,掌握好每一种题型的解题方法。复习中就紧扣例题,掌握的题目一次过目,碰到难题就多研习几遍,直到弄懂为止。

3.把整理笔记当复习

复习课堂上,老师的板书往往比较零乱,需要整理。而其实,整理笔记的过程也正是一次很好的复习过程。怎么整理笔记?提纲挈领这是很多同学的做法,不过这是中庸之道;而把方法和容易出错之处整理清楚,一目了然,才是上策。

在面对测试、考试上,都要努力去认同自己。分数虽然很重要,但更重要的是分析你得到的分数和你得不到的分数,毕竟不是高考,当前阶段分数的高低其实没有意义的。

在测试、考试后,大家只需做三件事:

一、根据所获取分数的部分,整理你当前会的知识,会做的题型。

二、根据所丢的分数,立即回归课本,看完课本后再做一遍。

三、拿着卷子询问自己,当时做对的题自己是怎么想的,不会的题当时是怎么想的,现在会的题和当时不会做时差距在哪里。

善于总结每一次测试、考试的优势和劣势,才会让成绩进一步提升。

高考并不是简单的重复考知识点,所以光记住每个知识点并没有多大用处。训练正确的思维习惯和思维方式才是复习的关键。在大大小小的测验中,应该重视错题,利用错题“淘金”。

一思:我为什么会做错

高考复习,整理好自己的错题集,记下每次考试中曾经“跌过跤”的地方,以及分析、圈注。多问问自己:“我为什么会犯错?”“我在哪些地方老犯错?”

前者关乎错误原因。事实上,所有的错题都离不开三类:第一类是题目非常简单,而我们在那一刻表现得特别愚蠢,这是粗心大意。第二类是拿到题目,两眼茫然,一点思路都没有,这是学艺不精,或者题目本身较难。第三类就是题目难度适中,论道理有能力完全能够做对,但是却做错了。

后者旨在掌握自己所犯错的类型,“对症下药”。比如,仔细分析自己的试卷,发现有许多错误是因为审题不清而造成的。这就要重视概念错误。每个经历过高考的人都知道,审题多么重要。因此在复习中遇到所犯的错误,首先要分析是否由于审题不清造成的,如果是,就要找出这种诱使你犯错误的“陷阱”。

二思:怎么才能不出错

对待错题的态度和方法不同,学习效果也会有天壤之别。如果只是把错题在试卷上标注,复习中偶然想起,随手翻看,这种方法看似节省时间,但是注意力极易被分散,复习效果反而大打折扣。

毫无疑问,整理错题,做错题集是行之有效的好方法。一方面便于集中查阅自己犯过的错误,另一方面便于翻看。把错题集中记录到一个本子上,看到曾经出现过的问题,再比照课本里面相应的内容,边记边看,这样复习效果非常显著。

错题集的另一妙用是能够帮助你分析学科状况,哪个学科,记载下来的错误越多,就说明我对这门科目的掌握还有很大的不足,意味着需要调整策略,投入更多的精力。临近高考前,抽空把几个错题本集中在一起看,每个学科的错误都集中扫描一遍,每一次错误都牢记心头,就像是“以最佳的状态打了疫苗”。

三思:第一时间改错

“不绕过,不拖沓,第一时间改错,然后迅速分析总结。”这才是应对错题的应有之策。

不绕过,就是正视自己的错误,不讳疾忌医,不为自己的错误寻找借口。

不拖沓,就是遇到错题,当场解决,不隔一段时间再吃“回头草”(因为经过一段时间的间隔,很可能遗忘,即使记得,也很难记起当初是怎样犯的错。如此对待错题,事倍功半)。

迅速分析总结,就是趁热打铁,对每一道错题都认真分析,研究出错原因,找准致错症结,避免再次犯错。

1.选择题——“不择手段”

题型特点:

(1)概念性强

数学中的每个术语、符号,乃至习惯用语,往往都有明确具体的含义,这个特点反映到选择题中,表现出来的就是试题的概念性强,试题的陈述和信息的传递,都是以数学的学科规定与习惯为依据,决不标新立异。

(2)量化突出

数量关系的研究是数学的一个重要的组成部分,也是数学考试中一项主要的内容,在高考的数学选择题中,定量型的试题所占的比重很大,而且许多从形式上看为计算定量型选择题,其实不是简单或机械的计算问题,其中往往蕴含了对概念、原理、性质和法则的考查,把这种考查与定量计算紧密地结合在一起,形成了量化突出的试题特点。

(3)充满思辨性

这个特点源于数学的高度抽象性、系统性和逻辑性。作为数学选择题,尤其是用于选择性考试的高考数学试题,只凭简单计算或直观感知便能正确作答的试题不多,几乎可以说并不存在,绝大多数的选择题,为了正确作答,或多或少总是要求考生具备一定的观察、分析和逻辑推断能力。思辨性的要求充满题目的字里行间。

(4)形数兼备

数学的研究对象不仅是数,还有图形,而且对数和图形的讨论与研究,不是孤立开来分割进行,而是有分有合,将它们辩证统一起来。这个特色在高中数学中已经得到充分的显露。因此,在高考的数学选择题中,便反映出形数兼备这一特点,其表现是几何选择题中常常隐藏着代数问题,而代数选择题中往往又寓有几何图形的问题。因此,数形结合与形数分离的解题方法是高考数学选择题的一种重要且有效的思想方法与解题方法。

(5)解法多样化

以其他学科比较,“一题多解”的现象在数学中表现突出,尤其是数学选择题由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。常常潜藏着极其巧妙的解法,有利于对考生思维深度的考查。

解题策略:

(1)注意审题

把题目多读几遍,弄清这个题目求什么,已知什么,求、知之间有什么关系,把题目搞清楚了再动手答题。

(2)答题顺序不一定按题号进行

可先从自己熟悉的题目答起,从有把握的题目入手,使自己尽快进入到解题状态,产生解题的激情和欲望,再解答陌生或不太熟悉的题目。若有时间,再去拼那些把握不大或无从下手的题。这样也许能超水平发挥。

(3)数学选择题大约有70%的题目都是直接法

要注意对符号、概念、公式、定理及性质等的理解和使用,例如函数的性质、数列的性质就是常见题目。

(4)挖掘隐含条件,注意易错易混点。

例如集合中的空集、函数的定义域、应用性问题的限制条件等。

(5)方法多样,不择手段

高考试题凸现能力,小题要小做,注意巧解,善于使用数形结合、特值(含特殊值、特殊位置、特殊图形)、排除、验证、转化、分析、估算、极限等方法,一旦思路清晰,就迅速作答。不要在一两个小题上纠缠,杜绝小题大做,如果确实没有思路,也要坚定信心,“题可以不会,但是要做对”,即使是“蒙”也有25%的胜率。

(6)控制时间

一般不要超过40分钟,最好是25分钟左右完成选择题,争取又快又准,为后面的解答题留下充裕的时间,防止“超时失分”。

2.填空题——“直扑结果”

题型特点:

填空题和选择题同属客观性试题,它们有许多共同特点:其形态短小精悍,考查目标集中,答案简短、明确、具体,不必填写解答过程,评分客观、公正、准确等等,不过填空题和选择题也有质的区别。首先,表现为填空题没有备选项,因此,解答时既有不受诱误的干扰之好处,又有缺乏提示的帮助之不足。对考生独立思考和求解,在能力要求上会高一些。长期以来,填空题的答对率一直低于选择题的答对率,也许这就是一个重要的原因。其次,填空题的解构,往往是在一个正确的命题或断言中,抽去其中的一些内容(即可以使条件,也可以是结论),留下空位,让考生独立填上,考查方法比较灵活,在对题目的阅读理解上,较之选择题有时会显得较为费劲。当然并非常常如此,这将取决于命题者对试题的设计意图。

填空题的考点少,目标集中。否则,试题的区分度差,其考试的信度和效度都难以得到保证。这是因为:填空题要是考点多,解答过程长,影响结论的因素多,那么对于答错的考生便难以知道其出错的真正原因,有的可能是一窍不通,入手就错了;有的可能只是到了最后一步才出错,但他们在答卷上表现出来的情况一样,得相同的成绩,尽管他们的水平存在很大的差异。

解题策略:

由于填空题和选择题有相似之处,所以有些解题策略是可以共用的,在此不再多讲,只针对不同的特征给几条建议:

一是填空题绝大多数是计算型(尤其是推理计算型)和概念(或性质)判断性的试题,应答时必须按规则进行切实的计算或合乎逻辑的推演和判断;

二是作答的结果必须是数值准确,形式规范,例如集合形式的表示、函数表达式的完整等,结果稍有毛病便是零分;

三是《考试说明》中对解答填空题提出的要求是“正确、合理、迅速”,因此,解答的基本策略是:快——运算要快,力戒小题大做;稳——变形要稳,防止操之过急;全——答案要全,避免对而不全;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意。

3.解答题——“步步为营”

题型特点:

解答题与填空题比较,同居提供型的试题,但也有本质的区别。

首先,解答题应答时,考生不仅要提供出最后的结论,还得写出或说出解答过程的主要步骤,提供合理、合法的说明,填空题则无此要求,只要填写结果,省略过程,而且所填结果应力求简练、概括的准确;

其次,试题内涵解答题比起填空题要丰富得多,解答题的考点相对较多,综合性强,难度较高,解答题成绩的评定不仅看最后的结论,还要看其推演和论证过程,分情况判定分数,用以反映其差别,因而解答题命题的自由度较之填空题大得多。

评分办法:

数学高考阅卷评分实行懂多少知识给多少分的评分办法,叫做“分段评分”。而考生“分段得分”的基本策略是:会做的题目力求不失分,部分理解的题目力争多得分。会做的题目若不注意准确表达和规范书写,常常会被“分段扣分”,有阅卷经验的老师告诉我们,解答立体几何题时,用向量方法处理的往往扣分少。

解答题阅卷的评分原则一般是:第一问,错或未做,而第二问对,则第二问得分全给;前面错引起后面方法用对但结果出错,则后面给一半分。

解题策略:

(1)常见失分因素

①对题意缺乏正确的理解,应做到慢审题快做题;

②公式记忆不牢,考前一定要熟悉公式、定理、性质等;

③思维不严谨,不要忽视易错点;

④解题步骤不规范,一定要按课本要求,否则会因不规范答题失分,避免“对而不全”如解概率题,要给出适当的文字说明,不能只列几个式子或单纯的结论,表达不规范、字迹不工整等非智力因素会影响阅卷老师的“感情分”;

⑤计算能力差失分多,会做的一定不能放过,不能一味求快,例如平面解析中的圆锥曲线问题就要求较强的运算能力;

⑥轻易放弃试题,难题不会做,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。也许随着这些小步骤的罗列,还能悟出解题的灵感。

(2)何为“分段得分”

对于同一道题目,有的人理解的深,有的人理解的浅;有的人解决的多,有的人解决的少。为了区分这种情况,高考的阅卷评分办法是懂多少知识就给多少分。这种方法我们叫它“分段评分”,或者“踩点给分”——踩上知识点就得分,踩得多就多得分。与之对应的“分段得分”的基本精神是,会做的题目力求不失分,部分理解的题目力争多得分。

对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得点分。我们说,有什么样的解题策略,就有什么样的得分策略。把你解题的真实过程原原本本写出来,就是“分段得分”的全部秘密。

①缺步解答:如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。特别是那些解题层次明显的题目,或者是已经程序化了的方法,每一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”。

②跳步答题:解题过程卡在某一过渡环节上是常见的。这时,我们可以先承认中间结论,往后推,看能否得到结论。

如果不能,说明这个途径不对,立即改变方向;

如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。

由于考试时间的限制,“卡壳处”的攻克如果来不及了,就可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面。若题目有两问,第一问想不出来,可把第一问作“已知”,先做第二问,这也是跳步解答。

③退步解答:“以退求进”是一个重要的解题策略。如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。总之,退到一个你能够解决的问题。为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法提供有意义的启发。

④辅助解答:一道题目的完整解答,既有主要的实质性的步骤,也有次要的辅助性的步骤。实质性的步骤未找到之前,找辅助性的步骤是明智之举。

如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等。答卷中要做到稳扎稳打,字字有据,步步准确,尽量一次成功,提高成功率。试题做完后要认真做好解后检查,看是否有空题,答卷是否准确,所写字母与题中图形上的是否一致,格式是否规范,尤其是要审查字母、符号是否抄错,在确信万无一失后方可交卷。

欢迎关注株洲微门户

欢迎关注株洲网微博

责任编辑:
  • 微笑
  • 流汗
  • 难过
  • 羡慕
  • 愤怒
  • 流泪